

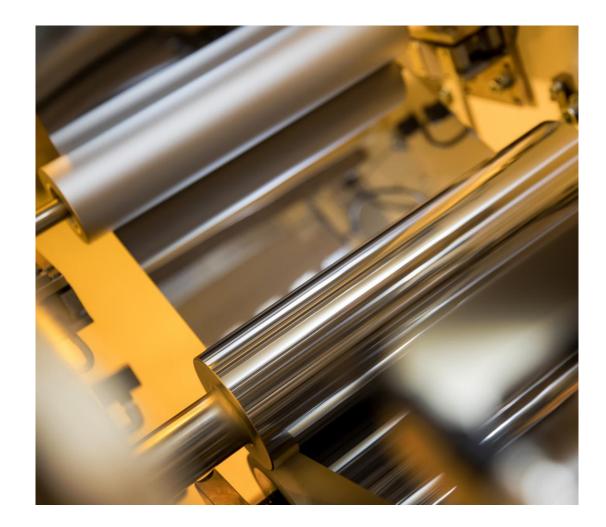
Energizing Innovation™

February 2020

Safe Harbor Statement

This report includes forward-looking statements covered by the Private Securities Litigation Reform Act of 1995. Because such statements deal with future events, they are subject to various risks and uncertainties and actual results for fiscal year 2017 and beyond could differ materially from the Company's current expectations. Forward-looking statements, including estimates of capacity, selling price and other material considerations, are identified by words such as "anticipates," "projects," "expects," "plans," "intends," "believes," "estimates," "targets," and other similar expressions that indicate trends and future events.

Factors that could cause the Company's results to differ materially from those expressed in forward-looking statements include, without limitation, variation in demand and acceptance of the Company's products and services, the frequency, magnitude and timing of raw-material-price changes, general business and economic conditions beyond the Company's control, timing of the completion and integration of acquisitions, the consequences of competitive factors in the marketplace including the ability to attract and retain customers, results of continuous improvement and other cost-containment strategies, and the Company's success in attracting and retaining key personnel. The Company undertakes no obligation to revise or update forward-looking statements as a result of new information, since these statements may no longer be accurate or timely.

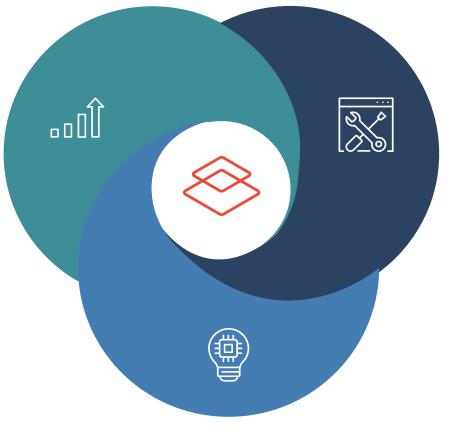

Thinfilm financial reports may be accessed via the following web page: https://thinfilmsystems.com/investor-relations/presentations-webcasts/

Thin Film Electronics ASA

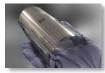
World-class flexible electronics manufacturing for thin & safe battery solutions

- Fully equipped, production-grade roll-to-roll clean room facility
- Extensive IP portfolio covering flexible electronics, materials, substrate, barrier, encapsulation expertise
- Publicly listed OSE / OTCQX

Delivering thin & safe solid-state lithium batteries


- Developing family of rechargeable solid-state lithium battery (SSLB) products
- Addressing existing and expanding markets, including the \$64 billion wearable devices market, initially focusing on medical applications
- Leveraging Thinfilm core assets and IP in materials and process innovation, including R2R manufacturing on flexible metal substrates
- Significant cash generation potential based on premium pricing and > 80% contribution margins leveraging existing fixed assets

Delivering thin & safe SSLBs at scale


PREMIUM PRODUCT

- On-body applications require thin, safe batteries
- Customized form factors required for next-generation wearable devices

MANUFACTURING

- Capable of producing 10s of millions of units per year
- Validated sheet- and roll-based manufacturing lines

IP & INNOVATION

- Patented steel substrate barrier materials
- Encapsulation technology applicable to battery manufacturing
- Process development partner with demonstrated SSLB experience accelerates timetable and reduces risk

Evolution of Thinfilm strategy

NFC strategy

- Creating new market
- Required shift in consumer behavior
- Dependent on TTF standard adoption
- Required production of billions of units for economic R2R costs
- Post R2R process added significant cost
- Single-digit penny ASPs

SSLB strategy

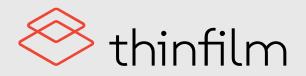
- Address existing & expanding markets
- B2B sales model
- Established technology
- Cashflow breakeven at significantly lower factory utilization
- Primary manufacturing within R2R line
- Single-digit dollar ASPs

Investment opportunity

Opportunity

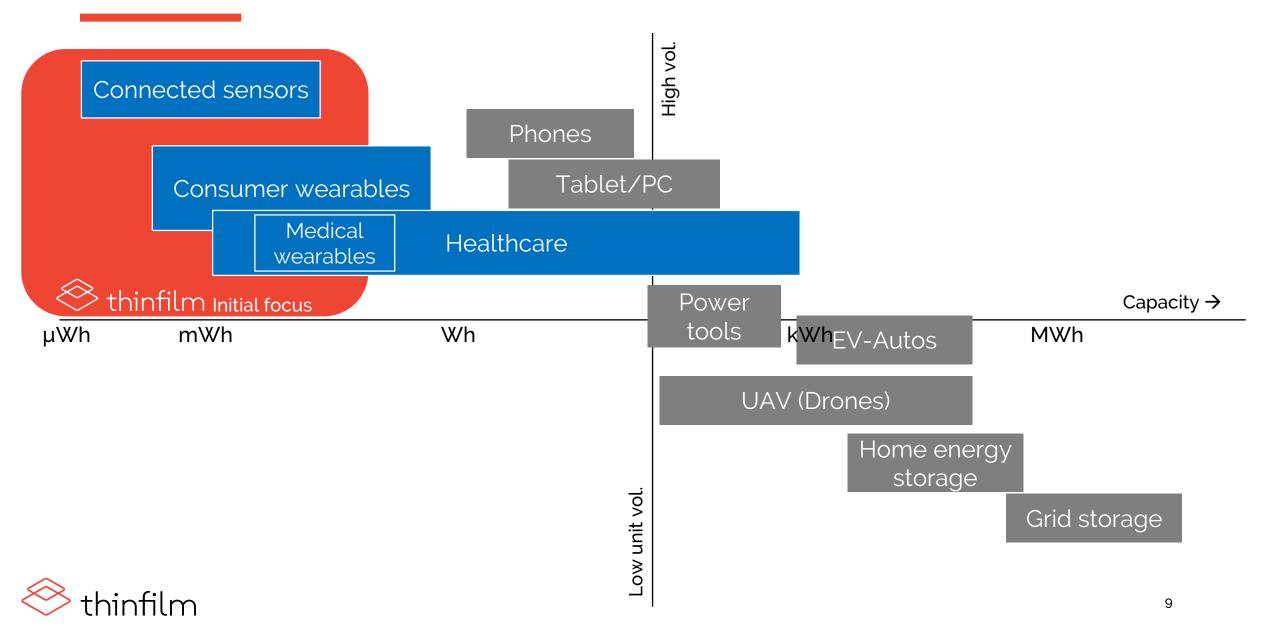
Become the world's premier provider of thin and safe solid-state lithium batteries at scale required for wearables and connected sensors, with initial focus on medical applications

Unique Thinfilm • Leverage globally u • Steel barrier patent


position

Key milestones

- Leverage globally unique factory, ~\$35M capital investment
 Steel barrier patente & ID enable antimized called state batter
- Steel barrier patents & IP enable optimized solid-state battery manufacturing
- Q2: multiple battery-specific IP filings
- Q2: demonstrate complete battery on Thinfilm equipment
- Q3: customer engineering samples
- Q4: customer design-ins (2+)
- 2H 2021: first SSLB product revenue
- End-2022: cashflow breakeven
- 2023+: increasing volumes (10M+ units) drive strong cash generation


Robust and sustained cash generation based on unique, defendable position and manufacturing leverage

Energy storage market

Thinfilm energy storage focus

Trends driving Thinfilm focus markets

5G devices	Safety	Distributed vs. centralized energy	New form factors
		A FZ A	
 Ubiquitous sensing and wireless comms Small, distributed end nodes Long deployment lifetimes B2B & consumer applications 	 Consumers aware of safety incidents On-body wearables increase risk 	 Local energy storage needed at each node Energy harvesting needs backup power 	 Users need comfortable wearables Custom shapes Compatibility with in-mold processes

Targeting connected applications

Emerging Opportunities Wearables & Healthcare **Sensor Networks Diabetes monitoring** Cardiac monitoring Environmental sensing Defense applications Electronic skin patches Smart cities Smart textiles Temperature sensing Smart factories In-mold electronics Sweat sensing 5G nodes Motion sensing

Initial target market

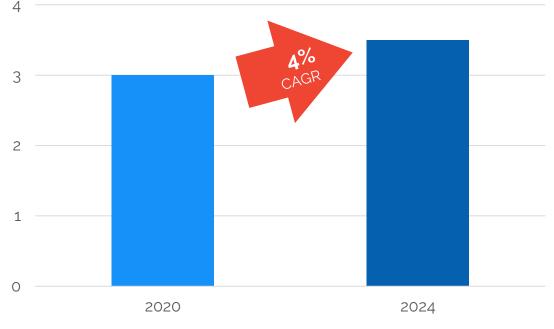
hinfilm

Discovery phase

Established and expanding markets

Wearables

\$92 billion by 2024 at 9.5% CAGR


Continuous glucose monitoring (CGM)

units doubling to 100M by 2023

Emerging opportunities in

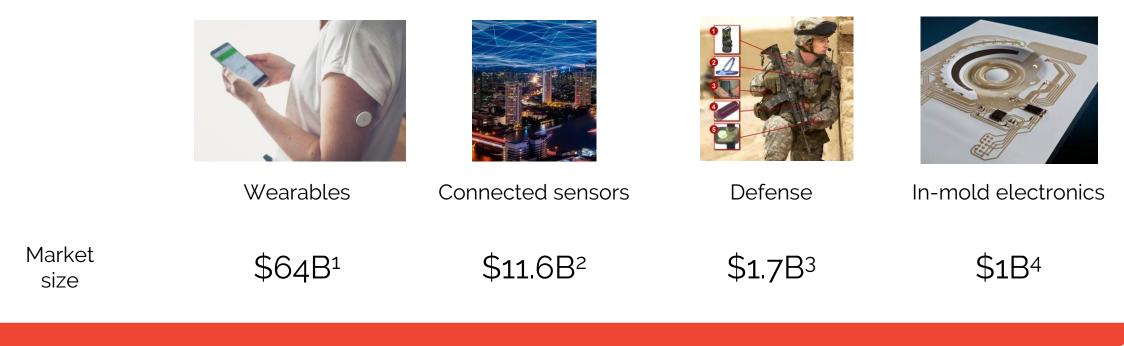
cardiovascular monitoring, skin patches, "smart soldier", defense applications

Addressable Market: Thin, Flexible Batteries (\$B)

Source: IDTechEx, 2019

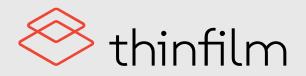
"Batteries are the main bottleneck of wearables"

"Current batteries have the shortcomings of low capacity, large volume, bulky, heavy and rigid disadvantages"


-- Dr. Xiaoxi He, IDTechEx, 2019

Key priorities for energy storage in wearables

Market priority Ma		Manufacturer demand on battery	
On-body sensing priorities	Safety	Eliminate risk of excessive heat / fire / explosion	
On-body sensing priorities	Form factor	Maximize comfort with ultra-thin devices in custom shapes	
(daily charging over ~3 years)		Consistent performance across up to 1000 cycles (daily charging over ~3 years)	
		Enable fast charging (~75% charge in 30 minutes)	
	Wireless functionality	Support high peak currents during transmission	
	Battery life	Store more energy in same or smaller volume	
	Commercial viability	Production scale, reasonable cost	

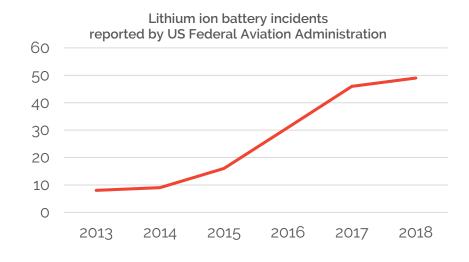

Significant opportunities for SSLB

Multiple existing and expanding markets need battery innovation

Sources: (1) IDTechEx 2019 (2) MarketWatch 2017 (3) IDTechEx 2020 (4) IDTechEx 2018

Solid-state lithium batteries

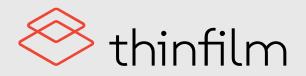
Thin, solid-state lithium battery – Current State


- Mature battery chemistry developed in 1990s
- Solves fundamental limitations of traditional lithium-based cells:
 - Safe: solid electrolyte \rightarrow no fire/explosion risk
 - Ultra-thin (15-micron battery stack)
 - Extended life: 1000+ cycles
 - Improved sub-freezing performance
 - High peak current output
- Low manufacturing capacity and high costs limit wide availability
- Typically restricted to µAh energy storage as a result

SSLB solves li-ion fire safety concerns

The FAA reports that, on average, one of these fires occurs every 10 days. Here's what passengers need to know.

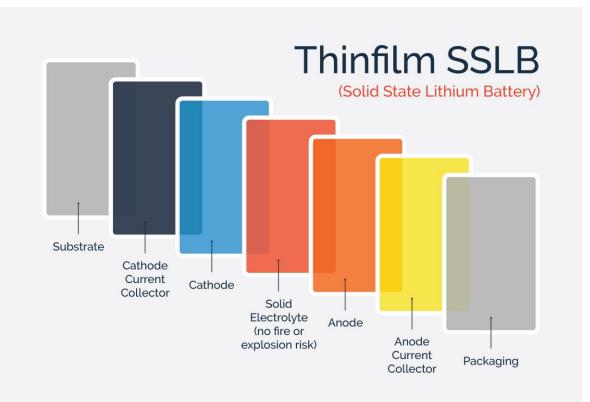
Source: US Federal Aviation Administration, 2019


The New York Times

Galaxy Note 7 Fires Caused by Battery and Design Flaws, Samsung Says

- Fundamental safety concerns restrict device innovation
- Wearable devices minimize distance between battery and body
- Millions of devices recalled due to lithium battery concerns

Solid electrolyte eliminates fire/explosion risk



Thinfilm's unique solution

Thinfilm SSLB technology

Thinfilm core technical advantages:

- Stainless steel with proven metal diffusion barrier
- Scalable thickness to accommodate thin form factors
- Improved reliability through backside hermetic seal
- Flexible and durable substrate
- Solid electrolyte eliminates fire and explosion risk

Thinfilm R2R manufacturing advantage

	6			0
Core Product Requirement	100mm R2R Thin Flexible ceramic	200mm silicon wafer	Flex polyimide on Gen 8 glass	320mm Thinfilm R2R steel
Energy density	High	High	Low	High
Durability @25um	Low (brittle)	Low (brittle)	High	High
Variable Cost	High	High	Medium	Low
Substrate area (m²)	20	0.03	~3	64 m²
Units per substrate (Based on 2 cm ² per mAh)	90,000	120	13,500	270,000
Backgrinding required	No	Yes	No	No

Steel: ideal substrate for SSLB production

Ultra-thin

Mechanically robust

Flexible

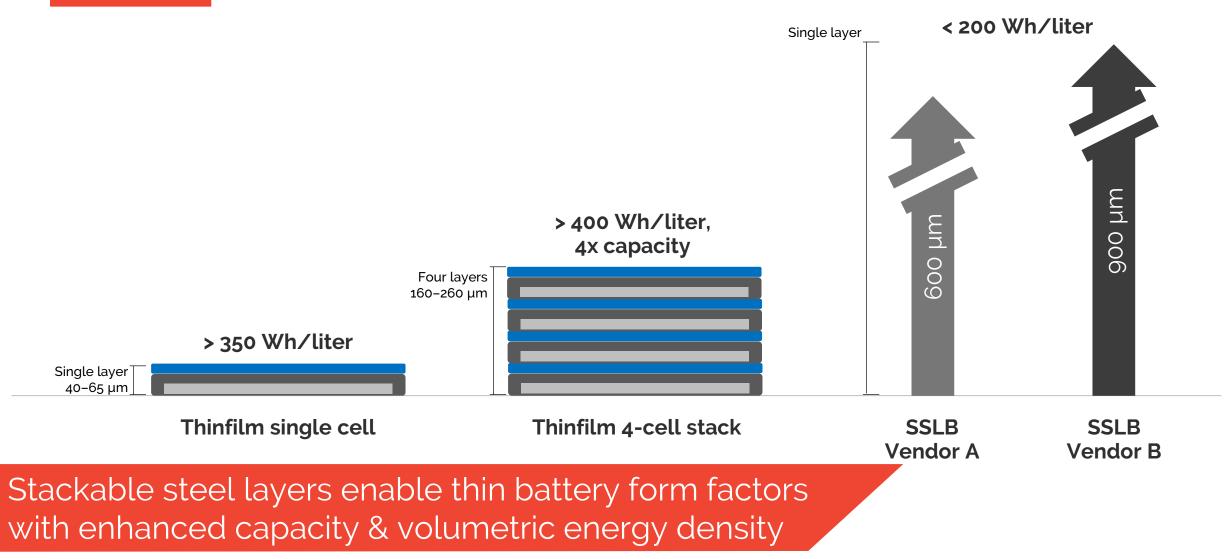
High-temperature

Moisture resistant Abundant 5-20 µm thickness

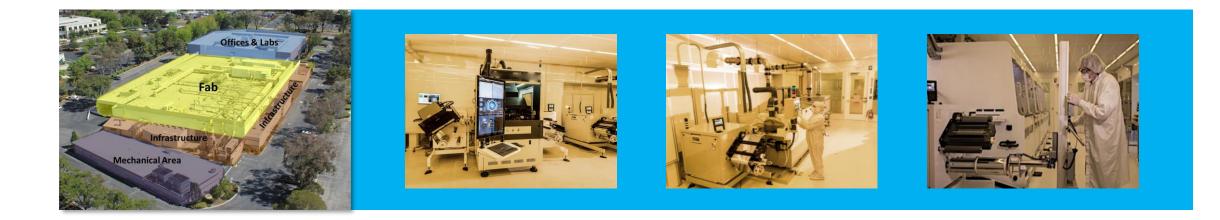
Enables large-area batteries without cracking common in silicon wafers

Allows roll-based scale-up

Compatible with high-temperature processes to increase energy density


Acts as natural backside hermetic seal

Commonly manufactured material



Steel and stacking: path to superior energy density

Scale: Thinfilm Silicon Valley facility

- Operational H-class clean room: 20,000 sq ft with expansion potential
- Installed capacity to manufacture 10s of millions of mAh-class cells
- Validated R2R manufacturing process

Catalyzing SSLB growth

Current SSLB limitations

Insufficient production capacity for mAh cells

Rigid, expensive substrates

Lack of design flexibility

Limited energy storage capacity (µAh) Thinfilm solution

Production-scale facilities: Tens of millions mAh capacity

Thin, durable, flexible, high-temperature steel

Custom form factors

Higher volumetric energy density in mAh-class cells

Competitive differentiation

Market priorities	Coin cell	Traditional Li-ion	Lithium manganese disposable	Available SSLB	🖄 thinfilm SSLB
Safety	Fair	Poor	Fair	Excellent	Excellent
Thickness	Fair	Poor	Good	Fair	Excellent
Flexibility	Poor	Poor	Excellent	Poor	Excellent
Weight	Fair	Poor	Good	Excellent	Excellent
Cycle life	Fair	Good	None	Excellent	Excellent
Scale potential	Excellent	Excellent	Excellent	Fair	Excellent

Source: IDTechEx (baseline), Oct 2018; Thinfilm SSLB estimates

How Thinfilm is building a successful business

Leadership team

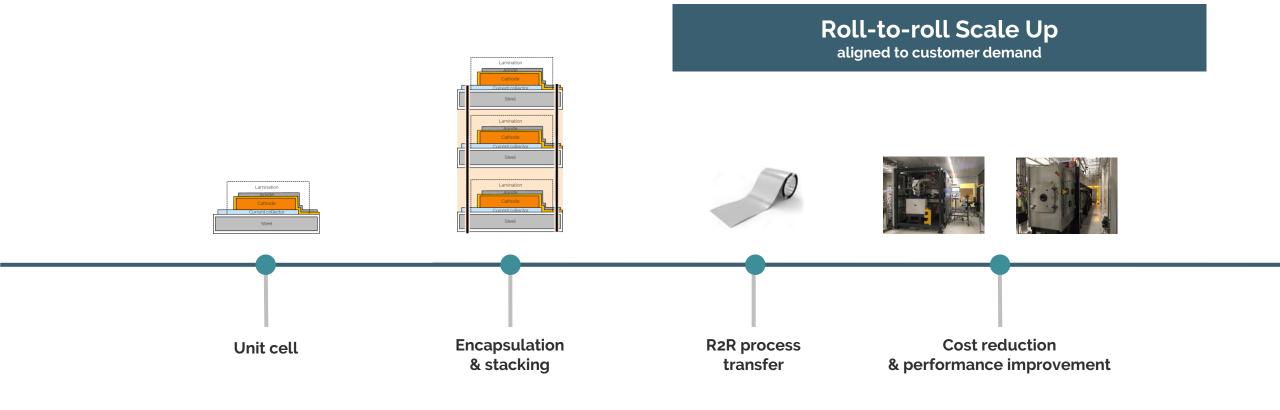
Kevin Barber Chief Executive Officer

Mallorie Burak Chief Financial Officer

Arvind Kamath EVP Technology Development

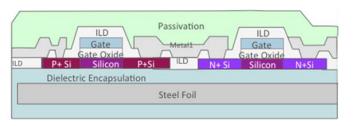
Giampaolo Marino EVP Product Solutions

Shannon Fogle

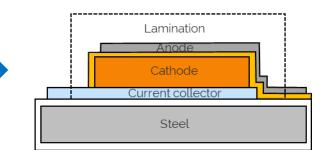

Development progress to date

- Engaged process development partner with demonstrated SSLB experience to accelerate timetable and reduce risk
- Established battery test and measurement capability
- Reconfiguring existing line to enable lithium-based manufacturing
 - Sheet line conversion nearly complete for initial volumes / samples
 - Roll-to-roll line conversion will follow to match growing demand

Process technology development approach



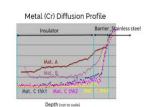
🔗 thinfilm


IP strategy to accelerate development

Apply existing IP to

SSLB technology

Hybrid CMOS TFT on steel


Flexible steel foil

ltra-thin, durable products

>200 patents worldwide

Barrier technology

New SSLB IP development

product, packaging, process, manufacturing

Product & solution differentiation

- Custom form factors
- Thickness < 100µm
- Stackable configuration
- Zero swelling
- Wide operating temperatures

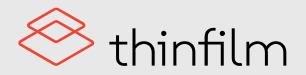
- BMS expertise at system and component levels
- Fast charge capability up to 2C

- Highest SSLB volumetric energy density
- Capacity increase with stacking

- Output voltage: 3.9V nominal
- Capacity: µAh mAh
- High power density:
 peak current up to 10C

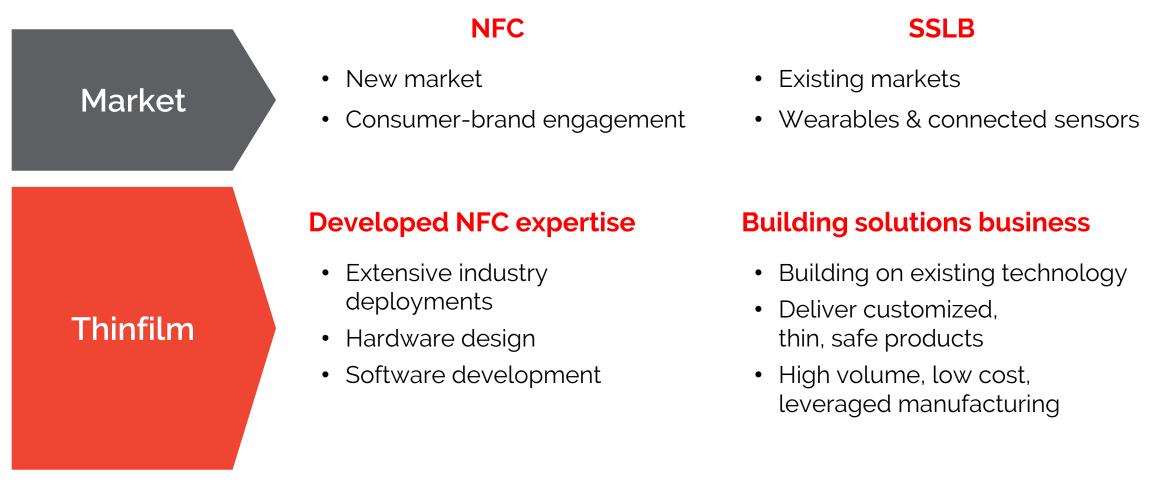
Legacy business update

NFC / CNECT[®] platform


- Thinfilm continues previously announced efforts to monetize NFC assets, including software platform, hardware, and IP
- Currently engaged with potential acquirers

EAS

 January 2020: shipped remaining finished goods, \$490k revenue to be recognized in Q1 2020


Continuing to evaluate additional opportunities for monetization

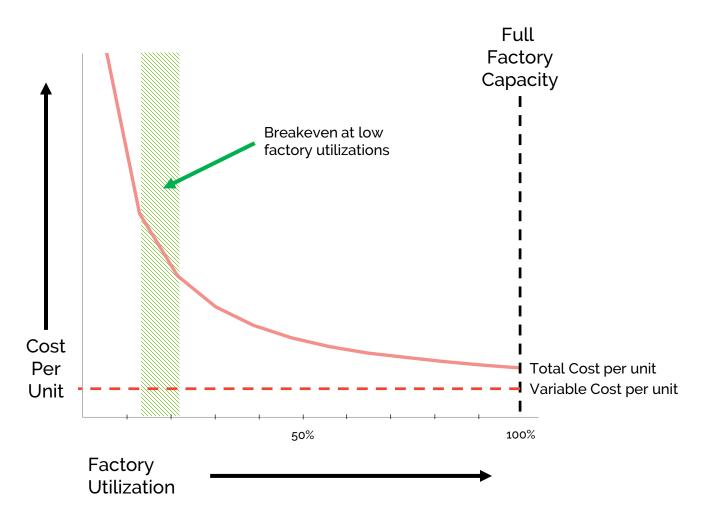
Summary

Changed focus to energy storage

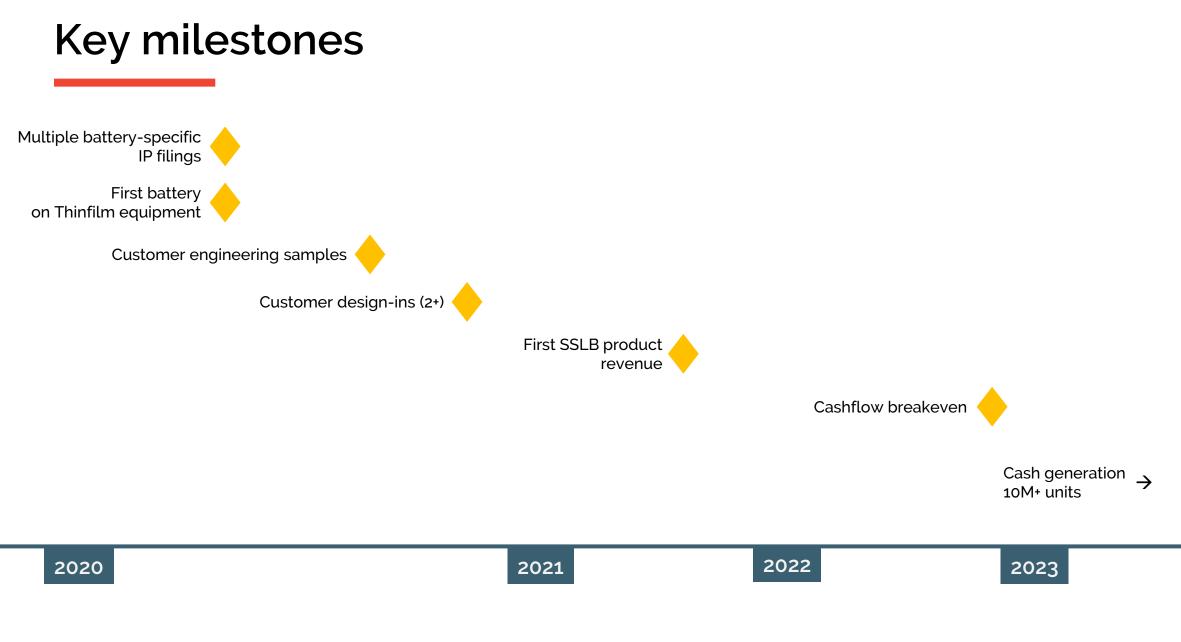
Significant SSLB revenue potential

Revenue Pillars

Indicative 2022 Revenue Potential


- Addressing existing markets
- Thin and safe battery solution
- Customization capabilities
 provide stickiness

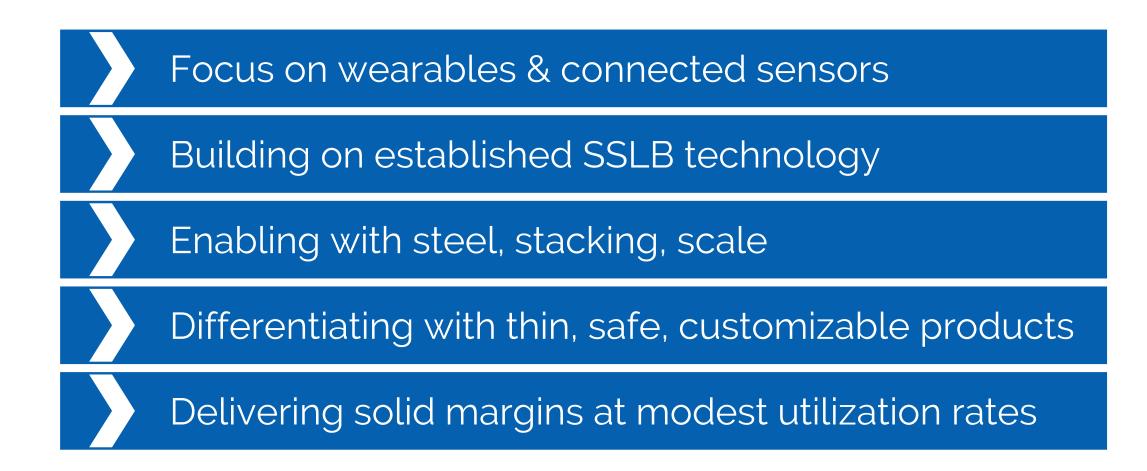
Thin battery SAM	3-4B USD	
Premium pricing	1-4 USD	
Factory potential	10s of millions / yr.	



High gross margins – leveraging existing assets

- Premium pricing
- Contribution margin > 80%
- Cashflow breakeven at < 20% utilization

🔗 thinfilm


A new business model

Revenu	le	Gross margin	OpEx
Premium pricing 1	3-4B USD 1-4 USD 10s of Mu / yr.	 High contribution margin > 80% Leveraging existing assets < 20% utilization required for cashflow breakeven Minimal CapEx needs 	Annual OpEx run-rate < \$15M Expected to remain stable

Robust and sustained cash generation based on unique, defendable position and manufacturing leverage

